The Second Fundamental Theorem for Meromorphic Minimal Surfaces by E. F. Beckenbach and T. A. Cootz
نویسنده
چکیده
ABSTRACT. The second fundamental theorem of Nevanlinna concerning meromorphic functions of a complex variable is extended in this note to an analogous result for meromorphic minimal surfaces. A similar extension of the first fundamental theorem involved generalizations of the classical proximity and enumerative functions and also a new visibility function; for the present result, a second enumerative function and a second visibility function are defined. Defect relations are discussed.
منابع مشابه
Digital cohomology groups of certain minimal surfaces
In this study, we compute simplicial cohomology groups with different coefficients of a connected sum of certain minimal simple surfaces by using the universal coefficient theorem for cohomology groups. The method used in this paper is a different way to compute digital cohomology groups of minimal simple surfaces. We also prove some theorems related to degree properties of a map on digital sph...
متن کاملL_1 operator and Gauss map of quadric surfaces
The quadrics are all surfaces that can be expressed as a second degree polynomialin x, y and z. We study the Gauss map G of quadric surfaces in the 3-dimensional Euclidean space R^3 with respect to the so called L_1 operator ( Cheng-Yau operator □) acting on the smooth functions defined on the surfaces. For any smooth functions f defined on the surfaces, L_f=tr(P_1o hessf), where P_1 is t...
متن کاملMinimal surfaces in quaternionic symmetric spaces
Theorem. Any compact Riemann surface may be minimally immersed in S. To prove this, Bryant considers the Penrose fibration π : CP 3 → S = HP . The perpendicular complement to the fibres (with respect to the Fubini-Study metric) furnishes CP 3 with a holomorphic distribution H ⊂ T CP 3 and it is well-known that a holomorphic curve in CP 3 tangent to H (a horizontal holomorphic curve) projects on...
متن کاملCharacteristic function of a meromorphic function and its derivatives
In this paper, some results of Singh, Gopalakrishna and Kulkarni (1970s) have been extended to higher order derivatives. It has been shown that, if $sumlimits_{a}Theta(a, f)=2$ holds for a meromorphic function $f(z)$ of finite order, then for any positive integer $k,$ $T(r, f)sim T(r, f^{(k)}), rrightarrowinfty$ if $Theta(infty, f)=1$ and $T(r, f)sim (k+1)T(r, f^{(k)}), rrightarrowinfty$ if $Th...
متن کاملUniform Approximation on Riemann Surfaces
This thesis consists of three contributions to the theory of complex approximation on Riemann surfaces. It is known that if E is a closed subset of an open Riemann surface R and f is a holomorphic function on a neighbourhood of E, then it is “usually” not possible to approximate f uniformly by functions holomorphic on all of R. In Chapter 2, we show, however, that for every open Riemann surface...
متن کامل